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PATTERNS OF ENERGY LEVELS AND SPECTRA FGR POLYATOMIC MOLECULES

u~-lliam G, Hartert

Theoretical Division - Los Alamos National Laboratory

Los Alamos, NM 87545

I. INTRODUCTION

Laaer spectroscopy has revealed a remarkable intricacy in the
rotational, vibrational, and electronic energ levels for polyatomic
molecules. The infrared spectra of SF6,[1-lo~ CF~,[llS121 and related
molecules contain several levels of structure on top of structure which
resembles a frartal in some ways. The purpose of this article will be to
●xhibit some of tihisstructure and introduce the eim lest theoretical

f’]interpretations of it which are presently available. 13

The theoretical interpretations are based upon quantum and semi-
classical models for the dynamics of angular momenta for electronic and
nuclear orbits and spins. The models shw that very complex spectra can be
understood in terms of comparatively simple non-linear classical rotational
dynamics combined with certain quantum tunneling,processes. [14,15] The

time seal.e6 for the classical and quantum moticns vary over many orders of
magnitude, and this accounts for the intricate structure of t’ae molecular

spectra.

Fig. 1 represents an attempt to exhibit the complex spectral structure
which can be seen using modern laser technology. Not too many years ago all

uhis structure would have sho’~nup only as a unresolved “landscape” on an
infrared spectral trace, and it might have been called a vibrational “line”
or “resonance.” However, is quite clear from Fig. 1 that this “line” is
actually made of many “sub-lines.” Indeed, these lines contain lines which
coutain flncr lines and so forth to yield a complex pnttern with literally
thousands of resonances.

Oneiwonders what the 5~’6molecules could be doing to make all these

spectral fqatures. The designation “U4“ refers to a particu!.ar type of
dipole-active vlbratimal motion of the SF6 molecule. All of the vq-spectral
features in Fig. 1 cor~espond to an excitation of this vibrat{on in onc way
or another. Still one wonders: Why can a V4-vibration be excited in so many
different ways?

Much more clearly defined answera to such questiona come out of a ncw
approach to the study of rotations and angular momentum states of polyatomic
molecules.[ 161 It was already known that the features in Fl&. 1 correspond

to transitions betv~an states with different combination or arrangements of
angular momanta iu the molecule. However, prevailing thaorics for
spactr~mcopy lackad a char g~omtric picture of how these angular momenta
were ●rrlnged in each states and there was no way to relate the complex
spectra to a well defined dynamicu for tho molecule.

There are threa types of an~lllarmomantuy i$volve~ in the Vb spectra.
First, thare are tha nngulnr momenta Labelad R, J, or F associated with the
over~ll rOt&tiOn cf the SFb mOleCU1es Second, there is the vlbrntional
—.
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angular momentum~ associated with the eccentric or crankshaft-like motio~ of

the v4-vijration. [14] Third, there is the total nuclear spin angular

momentum J due to the six F-nuclei which each have $pin-1/2. The sum of the
momentum R of the molecular rotor and the momentum L of the vibrator is the
total mechanical momentum

(1.1)

The overall total angular momentum

includes that of the nuclear spins, as well.

The new approach to the theory of rotational spectra is based upon the
concept of the rotational energy (RE) surface as developed by l{arterand

patterson.[13S141 In the following section this approach will be
introduced for the simplest case in whic~ :i~rational and nuclear spin

angular momentum effects are neglected {R-J-F). This will allow a simple
explanation of the spectral fine and superfine structures or cluster patterns
which appear in Fig. lb and c. Subsequent sections will show how these
patterns are modified by other mechanics eucl.as Coriolis interaction with
the vibrational momentum, higher order tensor Hamiltonians and nuclear spin
effects. The effects of electronic spin and orbital coupling are not
considered here, but it appcgrs that they should be treated simil:rily.

II. ROTATIOIJAL ENERGY SURFACES AND SPECTRAL CLUSTERS

For molecules having a cubic, octahedral, or tetrahedral structure the
following Ilamiltonian form due to llecht[171 has been extremely useful for
modeling their rotational spectra.

}1 m BJ2+10t ~4,,[J:+J&:-(3/5 )J4] (2.1)

The first term represents the rotational energy of a spherical top whose
moment of intertia is I = l/(2B). The second term represents centrifugal
di:ltortion as explained below, The distortion term is the lowest degree
polynomial in the ~nuular momentum operators (J#yJz) havinc cubic
symmetry without ;lSO having spherical symmetry. (The second degree
po’.ynomialJ2 = Jx+J~J~ in the first term obviously has spherical symmetry
as Well as cuDic SYlwiletry.)

The stanfi~rdapproach for solving Ilam ltonian. ouch as (2.1) involves
k

rewriting them in terms of Racah tenaore Tq. Following Hecht,[171 one

rewrites the fourth degree cubic part as follows.

J~+J;+J~-(3/5)J4 - (2J4/5)[T;+(5/14)1’2(Tj+’rf4)}] (2.2)

Thi~ is done so that mdtrix elements in an angular momontum bnsfs cnn I)c
derived easily using thp Wigner Eckart theorem



(2.3)

However, since most state for heavy polyatomic molecules involve high angular
quanta (J~lO) this approach becomes computationally laborious since many
large matrices must be diagonalized numerically by computer. Also, the
physical interpretation of th~ results of the diagonalizations are generally
obscured, and important physic~l effects may be unnoticed or unexplained.

Computer diagonalization studies by Lea, Leask, and Wolf[181; Dorney,
[and UatSOn ’91; and FOX, &lbra~th, ~onn, and Louck[201J revealed a

complex yet surprisingly orderly cluster structure of the rotational energy
levels. The first detailed explanation of the su erfine structure of

clusters was given by Harter and Patterson. [15,21f’ This explanation can

now be made more clearly by introducing the concep. of the rotational energy
surface.[1310

To obtain the rotational energy surface of a Hamiltonian such as (2.1
it is only necessary to plot it in an angular momentum polar co-ordinate
systems (B,Y) defined by the following

Jx = - J sin13co9f

J= J sinB siny
Y

(2.4)

Jz m J COSY

Here the angles (-B) ~nd (-Y) are ~he pol~r angles and aximut.ht respectively,
of the classical angular momentum vector J o (J ::J ) in the :)ody frame of

the molecule, The negative sign in t“,lisdefinifi~nzis convenient since the
sense of rotation for the body frame is the reverse of that for the
laboratory. The angles +3 and iy are two of the cozvantionally defined Euler
angles (u.,6,Y)as explained in Ref. [13i,

Using (2.4) to rewrite the Hamiltonian (2.1) one .jhtains

2
“ “ ‘J ‘tok4

J4(35cos4B- 30cos2flF5sin46cos4y+3)/2 (2.5)

The polar plot of this function is shown by the surface in Fig. 2 for
appropriate values of the constants B and t044, (The location of features on
the surface is independent of the values of these constants.) One should
remember that the energy 1s bein~ plotted radially outward or upward. ‘Chc
radius of aar.hpoint on the rotational energy (RE) surface represents the

rotational en..rgyobtained for the particular angular momentum direction
(-6,-Y) aub~ect to the :matraint that the magnitude J of the angular
momentum ia constant. It 1s often convenient to take unit values for J,.——
i.e. tc let

(2.6)

when plottinfi the classical surfaces.
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Fig. 2.

I The relational energy (RE) tiurface for the SF6 molecule. The

rotational energy is plntted radla~ly as a function of the
dlrcctlon of the an~ular momentum J. Topography lines correspond
to trajectories of the J-vector precearnlng in the molecular t.-amc

with constant rotational ●nergy. (At the aatrz time J 1s e const~nt
vector in the laboratory frame,) Dotted lines indicate
sepa matrices, and dashed lines ● re conntant energy tunnelln~ paths
on the E-sphere.

It is useful to understand why the surface in Fig. 2 has peaks along the
x, y, or z axes and valleys in between. It is helpful to imagine an
octahedral SF6 molecule with the S-F bonds along the same x, y, and z axes as
Fig, 2, It often happens that an RF surface has a shape that is roughly
similar to the molecule it is supposed to represent. (However, one should
not forget that the RE surface exists in an energy-angular momentum space

(E,;), only). If the SF6 molecule rotates around the (1OC) directions(i.e. ,
x, y, and z axes) it will be centrifugally distorted less than by rotation
with the same J around (Llll directions in between. This 1s becausg the
radial S-F bonds are severai times stronfier than the F-F “bonds”. Since
centrifugal force acts perpendicul~r to the rotation axis or J-vector, it
w1ll be more effective wheu J is not along the S-r’axes but ir,between them.
Greater distortion corresponds to greater ●ffective rotational inertia and
less ener,3y,and so the RE surface has valleys on th~ (ill)-axes.

l’hercfore the RE surface is an et’fective energy surface that is supposed
to account for the inertial deployment ~nd shifting of cargo on board the
molecule, se it retaras in epace. It provides an effici~nt way to show the
coneaquencos of conservation of aneular momentum (J) and energy (H), The
constancy of J is implicit in the con~truction of the RE surface, and
constant-l{ loci simply correspond to topography li,.esin+Fig. 2. Sinca
energy is plotted radially, the angulnr momentum vcrtor J must lie nlonu the
interuactiona of an RE surfaco for a giVLII J and fn energy sphere for n

given Il. In the absence of exterual torque, the J-v~ctor must remain fixcIl
jn magnltudo and direction in tilelnborntory~ but In the budy frame its

direction (but nut maLnitude) w1ll change 6S it movls aloIu:an RK surfncc
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topography line. This motion corresponds to an overall precession or
nutation of the molecule.

The speed or frequency of the precessional mot~on is determined by the
gradient or slope of the energy surface. For each J vector position there is
an angular velocity vector given by Hamilton’s equation

+
arid this determines the speed of J in the rotatfng body frame.

(2.7)

(:’.8)

For qualitative purpose the following left-handed mnemcnic is sufficient:
the J vector precesses clockwise around RE surface maxima (left thumb up) and
counter clockwise around minima. (The same rule applies to wind directi~n
around highs or lows In the northern hemisphere.) The arrows on the

topography lines in Fig. 2 indicate the directions of precession for each+
J-vector trajectory.

One of the most powerful features of an RE surface picture is that
trajectories on the surface can often be related to quantum energy levels and
spectral fine structure. In Fig. 3 the trajectories shown in Fig. 2 are
associated with energy levels of SF6 in tlm J=RE30 vibrational ground state
manifold. More precisely, the trajectories are associated with clusters of
energy levels where the number of rotational levels in a given cluster equals
the number of equivalent but distln.ct classical trajectories. For example,
the third highest trajectories ( ,.. these are marked with arrows in the
upper right hand side of Fig. 3.) are as~ociated with the third highest
cluster of levels. The third circle from the lower lefthand side of Fig. 3
displays a hi~hly magnified View of a cluster of levels labeled E, TIP and
Al . This cluster contains six levels altogether, as explained below.

The appearance of clusters in molecular spectra was one of the
surprising revelations provided by modern laser spectroscopy. [20]

Previously, the well known group theory of quantum energy levels, established
by Wign~r and developed in dozens of textbooks, was supposed to .{ccount for
all degeneracy due to symmetry of quantum energy levels. For example, levels
labeled by octahed~al symmetry species E and T1 (or 1’2) were understood to be

doubly and triply de},enerate, respectively, while species Al (or A2) labeled
single non-degenerate levels. A coincidence of any two or more symmetry
apeciea ir~the absence of!higher symmetry was often referred to as sn
“accidental degeneracytl,

Ilowever, the near degenerac~es of two, three, or four symmetry apecles

in the clusters indicated by Fig. 3 are clearly not accidents. In fact, the
patterns of energy level~ provide a direct.comparison of claas!cal VS.
quantum mechanlcnl behavior. The clusters are aasocited with m -classical (or

semi-classical) degeneracy of equivalent bLt disjoint tra~ectories for
angular momentum pteceasion. For exampla, each trn~ectory oro(,ndone of the
four ’fold(C4) symmetric peak~ hns th~: same energy us nn equiv;llent onc on
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each of the other five peakf,. Each set of six classical trajectories
corresponds to one of the $ clusters on the lower righthand side of Fig. 3.

Each ~ cluster has six rotational sublevels in the form of a (T1T2) or an
(ATE) combination. On the righthand side of Fig. 3 there are eight
equivalent copies of each classical tra~ectory near. the bottoms of three-fold
(C3) symmetric valleys. Each set of eight corresponds to the same number of
sublevels within c3 clusters (AIT1T2A2) or (TIET2).

The spacing and splitting of the clusters provides a direct measurement
for the rates of classical versus quantum angular momentum dynamics. The
rates for classical precessional motion are proportional to the inter-cluster

spacing such as the (1.8x 10-4 cm-l = 5.3 MHz) interval between the top two
clusters in Fig. 3. The rates for quantum tunneling are proportional to the
intra-cluster splitting such as the (1.6x10-6 cm-l E 4.8Hz) splitting of the
top cluster in Fig. 3. Note that the classical precessional frequency for
the top cluster is a’>out a million times faster than the quantum tunneling

frequency. This quantum tunneling frequency represents the rate for a
classically impossible feat in which the molecule jumps from one equivalent
precessional trajectory to anrther.

Inter-cluster spacing in called fine structure splitting while the
intra-cluster splitting is called supfine structure splitting. Generally,
the splitting of superfine struct~re is much finer than that of the ‘fine’
structure since the corresponding quantum tunneling is much slower than the
classical precession. However, if the different classical trajectories have
points that are sufficiently near one another, then the quantum tunneling may
become as rapid as the class!ccl precession. This happens in what is called
the separatrix or saddle point region of the energy space.

The dotted curves on the llEsurface in Fig. 2 or 3 are called .-*

separatrices, and the separatrix segments conne~t saddle points. These
dotted curves are called separatrices since they separate nearby trajectories
which prccess around different axes, and they lie on an energy sphere that
passes through the saddle points. Equivalent but distinct trajectories with
energies slightly above or below the separatrix energy will form avoided
crossings at each sad?le point. In the neighborhood of the saddle point, the
speed of the classical precession will be greatly reduced since the RE
surface slope is nearly zero. I{oweverp the quantum tunneling will be greatly
enhanced near these avoided crossings. Energy level clusters near the
separtrix energy will have vanishing fine structure splitting gince the
classical precession rates are vanishing, but the tunneling frequency will
sudJcnly blow up. In other words the cluster structure is completely melted
away at the scparatrix energy aa can bc seen in Fig. 3. The dynamics of a
molecule near the separatrix energy may be extremely com~licated and very
sensitive to initial condl.tions. This has to be so since the separatrix
marks the point where the molecule switches from C3 type clusters ar.dvalley
precession to a completely different CA type cluster and precessio~l around
peaks.

The C3-clusteP neparatrix-~ -cluster structure is clearly visible in
high resolution spectra. Probably the cleareat and most beautiful examples
so far are shown in laser spectra taken by A1.in Plne[22] from Cubane

(cellB). A (J-36) example 1s shown in Fig. 4 and it has a structure similar
to that of (J-30) levels in Fig. 3. The relative heights of the absorption
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peaka are determined by Pine from nuclear spin degeneracy and not simply by
counting A, T, and E rotational degeneracies. A simple method~r deriving

XY6 and XYn spin states was given by Harter and Patterson [16,23] and will

be-describ=d ~riefly later. -

CUBANE: W-6
R(36)

u P

w

C-C Stretch

@J-l

%

F, f,
00

Fa Fz
F,++, F,+F, M 80

I

00
M 70

E+F,+A, F~+F ,
c+F,+A, A,+F,+E

70
F,+E+FZ A,+F,+E

Fig. 4. Spectrum by Alan Pine of Cubane C811B u12 vibrational tra,]sition

~(3b). (See fief. ~ZZ1.) Three-fold ciusters sre separat,,d froi~
four-foid clusters by an uneven spectral scparatrix region. Note
that F symmetry labels in the fi~ura are the same as T lmbeis in
the text.

In Fig. lb there is an example of a J o 88 fine structure manifold of
clusters with the details of the superfine structure shown below it in Fig.
lC. It is worth noting that Fig. 1 and 4 represent qualitum transitions in
vibrational spectra involving the rotational levels in Fig. 3. It will be

shown in See, VB that the relevant rotational energy surfaces for
vibrationally excited states with large Coriulis interactions can have the
same shapes as the basic surface shown in Fig. 2. In this case spectral
structure is similar to level structure.

Before describing other types of RE surfaces we shall briefly mention an

~~~~~~~~~$1 This uses an Euler angle adaption of ~ohrc~ original action
semi-classical calculation of ~-type fine and superfine energy

quantization rule

An ‘~~ J~(En) = nn n=J,J-1 ...

where Jy = Jz is the component Oi J about the ~ axis of quantization
found by solving (2.4) and (2.5), i.e.

(2.9)

~+-m ~&co#y+ainbY )*[~(cos4T+sin4Y+l)-Jb (cosqy+sin`y)~L'2~ 1’2
(2.10a)

Y cos’’ytsinby+l
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whare

~m(E - BJ2+3J 4/5)/10 to44 . (2.10b)

For mora accurate results one uses the quantum expectation values for angular
Pomentum magnitudes i.e. , f +J(J+l) and J4 + (J(J+l) )2.

One varies the energy until the quantization condition (2.9) is
aatiafied. For J=30 one obtains En - 5.29, 3.53, 2.03, 0.79, -0.22, ... in
units of 10-” cm-l . These compare well with the exact values of 5.31, 3.54,
2.04, 0.80, -0.20,... obtained by the or lengthy procedure of numer~cal

diagonalization. Note the classical precessional frequency (UC) is given
by the well known action derivative formula

This confirms the relation between Vc e,nd fine structure splitting AE.

The euperEine splitting is determined by a tuuneling amplitude

~.”e-lo[
c

where

g.! J-(En)@path Y

(2.11)

(2.12)

(2.13)

is an il; tegral over a saddle point. An ●xample of such a path is the dashed
path connecting the top ~ trajectories round the Jx and T~ axes in
Fig. 2. The limits of the tunrleling integral are the closest approach points
m the quantizing tra~ectoories connected by a path. The tunneling
amplitudes S appear in a tunneling matrix

EOSSSS
O ES S S;
SSEOSS
SSOESS
SSSSEO
SSSSOE

(100)
(-lCJ)
(010]
::;;;)

(00-1)

(2.14)

which connects the six ●qu~valent C& tra~ectories tha have energy E around

the axes I (100), (-100 ),...) . The eigenvalues

hA1 = E+4S hTl - E hE - E-2S (2015)

of this matrix determine the superfine structure. Note that the T1 level is
twice as far from the AI level as the E level. This 1s what ia observed in
(ATE) clusters in spectra such as Fig. 1-4 where “nearest neighbor” tu~lellnc
is the dominant quantum process. Other tunnelinE processes hre discussed In
[15].
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111. SYMMETRY ANALYSIS FOR CLUSTERS

The symmetry analysis for spectral clusters may seem at fir~t to be a
little peculiar. Normally one expects a reduction in symmetry to cause the
sp’ I.ttingof degenerate energy levels. For example, consider a reduction of
cu.lc-octahedral (0) symmetry to ~ symmetry by applying a z-magnetic field.

This should cause the Zeeman splitting of the triply degenerate T1 level into
three levels of m=l,O, and -1. (The T1 state is like an L=l p-type atomic
orbital.)

NOW a classical ~-type cluster state with negligible tunneling also
represents a reduction in symmetry if the molecule is stuck processing on one

of six Q-s*~nmetrtc trh~ectories. The molecule is adlahaticaily distorted
from a perfect octahedron into something which really has no symmetry at
all. At best it has a dynamical symmetry associated with a particular
representation of the local ~ symmetry of a single trajectory. However, the
effect of thin symmetry breaking on the spectrum is opposite to that of the
Zeeman effect. Now the levels unsplit or cluster instead of splitting.—

The differer.ce is that in the Zeeman example the symmetry of the
Hamiltonian was reduced artificially or externally. Clustering and many
other related effects &re associated with what should probably be called
internal, spo~taneous, or dynamical symmetry breaking. In the latter the
symmetry of the underlying Hamiltonian is not disturbed, but at some point
the wavefunction can be regarded as hsving collapsed or locked into onc of
several equivalent alternatives. This is a t~uchy point since this collapse
cannnt be brought about solely by Schrodinger dynamics. At some point a
projection or “measurement” must be invoked. In the end the symmetry
analysis and quantum mechanics must be made to produce localized wavepacket
states that have “permanently” (for neglible tunneling) lost some of the
symmetry they had before they were born. Something like this is needed in
order that a classical world can make its appearance. All classical entities
which we so take for granted such as nuclei, atoms, molecules, or chemical

physicists must each have given Up a considerable amount of symmetry in order

to exist.

To understand tlic sjmmetry analysis for ~lther type of sym).letrybreakin~
let us return to the G, Zeeman example. A well known correlation exists
between the octahedral representations and those of lvs subgroup C4. Let us
label the ~ representations using azimuthal quanta-modulo four i.e. [04, lb,
24, 3b}. For example, the T1 representation is correlated with m=l-!4,
m=O=04, and m--l=~ sccording to Zeeman splitting, The T!, correlation is

recorded in che T1 row of the ~ correlation table in Fig. 5 a!.ongwith the
other O-representations. The rows of C2 and C3 tables provide similar
correlations appropriate for the Zeemtin type aprlied symmetry breaking.

The remarkable thin}:about thes~ tables is that the columns provide the
~iecesssry correlations for the clusters and spontaneous symmet.y breaking.

For example, the Q column in Fig. 5 contnins the cluster (AITIE). Whenever
the azimuthal angular quant~lm number associated with a given quantlzln~ Cq
trajectory Is Q (i.e., zero-modulo-four) then the (AITIE) cluster wILI bc
associated with that trajectory. This happens in Fig. 3 and 4 far Kh x 36,

32, 28, 24,... and in Fig. 1 for L = 88, 84, ..etc. For odd values
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correlations for octahedral symmetry species ●nd those of
subgroups C3 , CZ , Fnd G . (After Ref. ” [ 13]. ) ~he subgroups are
possible symmetries for ClaSSIcaI trmle~torlaa on Octal,edrnl RE

surface.
. ..-

The columns of each ~ble give the number of ●ach
octahedral species involved in ● particular type of cluatcr

in Figs. 3, k, 8, or 9. An XY6 molecule 1s nketchd rota:ln~
aPPrOx~matelY ~E It would for each Of the three ●ub~roups.
(Precession motion IS not being shown,)

of the azimuthal quantum number on C4 trajectories the ~or ?ti cluster (T1T2)

appears. The q clu”ters corrcspoi~d to the classical picture of SF6 rotation
sketched above th ~ t~ble. Similar analysis applies to the C3 clusters

using the C3 table in Fig. 5. Examples of CZ clusters will be shown in
Sec. V. Since t}.etwo fold axes in fig. 2 and 3 contain saddles and
separatrices, clustering iIIimpossible there.

This symme:ry analysis of clusters 1s based upon the “:heoryof induced
representations.[3,41 There are many new applications of this theory, but
possible none so prevalent and directly observable as in the rotational
spectra of common polyatomic molecules. We briefly consider another

application which helps to derive nuclear spin and hypcrfine properties.

Iv, SY?trlETRYANALYSIS FOR NUCLEAR SPINS

A polyatomic molecule such as SF6 Gr CBIILIcan be regarrlcdas un(lergolng
spontaneous symmetry breaking in order to anhieve lts classical structure and
r.~bic symmetry, Without thiu classical structure there is a much higher

symmetry which fncl.udes the arbitrary interchange of the identical nuclei.

The permutational symmetry S6 of SIX identical F nuclei has 6!=720 operations
and in thirty times larger than the cubic rotation group O which haa only

twenty-four rotations. This corresponds to Lliirty equivalent choices for
classical valleys into which the nuclear configuration could finally collapse

in order to make a stable SF~ molecule. Tile eight IInuclei must choose from
1680 equivalent final configur~tions around a cubic CH frame ●ven if that

frame is already established.
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The correla ion between the local cubic O-symmetry representations and
the much higher 56 or S8 repreaentations is analogous tc the correlation
between @ symmetry and O representations in rotational cluster analysis. A
partial set of correlation tables appropriate for snin 1/2 nuclei F and H aie

given below for Sq, S6, and S8 correlations with tetrahedral (T) and
cubic (0) symmetry of XYq , XY6 , and XY8 molecules, respectively. The Sn
representations are correlated with Young spin tableaus which describe the
states of ,total_guclear spin (1-0}112 ,...) allowed by the Pauli exclusion
principle:. 16s231

Table I. Correlation between tetrahedral or cubic representations and
Pauli-ellowed total nuclear spin quanta 1=0,1,...,4.

(a) S~+T

ETA

(b) S6+0 (c) s~+o

E T1 T2 Al A2 E T1 T2 A: A2

‘“; ‘m’=; IEz

One notes that each O species is correlated with a supercluster of

1=0

1
2
3
4

different nuclei spin states. For example a T1 state of cubane {C8118) is

correlated with 5 multiples of total nuclear spin I = 1 and one each of spin
I = 2 and 3 or 27 states altogether. T2 is correlated with two 1=0 singlets,
three each of 1=1 and 1=2 and one 1=3 septet or q? states altogether. This
explains the relctive intensity valum 271 and 33 written above the T1 and T2
lines in Pins’a spectrum in Fig. 4. (Note: T means the same as F.)

The absorption peaks associated with clusters have relative intensities
which are the sums of those of their constituents. For example the (T1T2)
clustelq have rclatlve intensity (2:+33 = 60). Howevar, the effect of
clusteritlg and related rotational dynamics on spin states is muc,~more subtle
than this. As the clustet splitting or S becomes s..iallerthe nature of the
nllclear spin state may Le drastically altered. Symrr.etry species which
normally are prohibited fron mixing can be strongly mixed and total nuclear
opin (I) may no longer be a good quantum number. This can happen whenever
the superfine splitting is comparable to or less than t c hyperfincj i.e. ,

less than abo~ 20 ktlz.

Since the superfine splitting drops exponentially according to (2.12)

there can be many clusters in which hyperfine mixing of species plays a major
role. Thase ara called Case% clu~tara in Fig. Id-e, It iH clear that many—.
case 2 clusters exist. Using extraordinary laser techniques Christian
Bord~[3P25P261 has observed man

~acque5 ~ord~~zs,zb!
exam les of hyperfinc mixing in case 2

clusters in SF6 . has verified the ●ffects in detailed
computer studies. These experiltlantsopen a new era in the study of molecular
structure and dynamics.

The dynamica 01 nuclear oplns in the presence of non-linear rotational
dynamics neads to be analyzed in more detnll. The detniled spectra of stroll};
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case 2 clusters as well as borderline case l-case 2 clusters need to be
understood. Preliminary studies include the use of ca~”l+2 correlation
diagrams such as Fig. 6, and approximate quantum models of the resulting
energy levels.~1’41 The resulting spectral patterns are called
superhyperfine structure in Fig. le and should lead to many interesting
effects involving nuclear spin-rotation coupling and RE surface dynamics.

We consid?r naw some related effects involving some different kinds of
RE surface dynamics and vibration-rotation coupling.
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V. OTHER TYPIiSOF RE SURFACES AND SPECTRAL PATTERNS

We consider now some different possibilities for RE surfaces and their
resulting spectral patterns. These represent only a few of the many
interesting effects that can be discovered using RE surface pictures and they
should be observable in lassr spectra of polyatomic molecules.

A. Fourth and Sixth Rank Tensor Combinations

The RE surfaces and spectra of the combination tensor

“4T4J6(V)- COS V T “6+~in~T (5.;)

wi”.1 he displayed for a range of values for the mixing parameter
\’ uO, n/6,,..,m. The first term involves a normalized fourth rank tensor
proportional to the one given in Eqs. 1.1, 2.2, and 2.5.

“4
T = (7/12)1’2[T; + (5/t4)1’2(T4+c4 )]

4 -4 (5.2)

- (21/210H)1’2(35c0046r30cos26,:5sinf:f3cos4y+3)

The gecond term is a normalized sixth rank tensor which also has cubic
symmetry.

“6T u (1/6)1’2[T~-(7/2)1’2(T~+T~4)]

(5.3)

- (13/213n)1’2 (231cos66-315cos4E+l~5cos26-2 lsin4d(l lcos2f3-l)cos4y-5)

One may plot each T4#6 for a Given J as an 1711surface as was done in
Fig. 2 for the v-O case.[27] However, plottlng in the spherical geometry
can make it difficult for onets eye to spot saddle points or other flat
regions. Therefore we shall bor:w n techntque from world maps and plot the
rotational energy along the z-axis ahove a stereographic projection of
roughly half the unit sphere. The x and y co.”ordinates on the projected
plane will be given in terms of the polar an~les B and Y by

x m t=n(6/2) Cos(yj

y- tan(B/2) sin(y)
(5.4)

Thus the equator (B-n/2) becomes a unit circle in the x-y plane. (In fact
any circle on the sphere is mapped into a ctrcle or straight line on the x-y
plane.)

The T4~6 RE surfaces are plottad as functiou!: of x and y

(-1.O~x,y~l.0) for several values of v in FiLI. 7. The plots are ID stereo
drawings which can be viewed by relaxinR the ayas ao that the left and right
eyes sec the left and rl~ht imagea, respectively. A stereo viewer or a card
held between the drawingo may help one enjoy ttsm 3D views more easily. OIIQ
should first examine the v-O drawing in Fig, 7(a) which repremcnta th@ top
half of tha RE surface in Fig. 2. Note the peaks on four ”fold nxes, valleys
on three-fold axes, and saddles on two-fold axes. The contours of Fig, 2 nre
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not reproduced on Fig. 7, but one can
since the constant energy surfaces in
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aee approximately
Fig. 7 are ~lanes

whence thay would go
parallel to x and y.

Next one should examine the v=2.O(m/6) surface in Fig. ~(c). It 1s

clear that the two-fold axaa no longer have saddle points-but hsve developed
fairly deep valleys. This means that some topography lineu or classical
trajectories will encircle the two fold axes, and that ‘@96 nperators with
approximately the came v will have two-fold clustere. Theaa are of the form
(A1ET1T2T2) or (A2ET1T1T2) obtained from the columns of the C2 table in Fig.
59 and each have 12 rotational sublevels altogether.

The eigenvalues of ‘#D5 for J-30 are plotted ue a function of v(O<V<14)
in Fig. 8 below. At v=O the spectrum haa the came form as in FIR. 3, ~u~ it

quickly changes ●s V varies. Cluetera trade epeciaa and form new clusters
including a pair of two-fold clueters that go from about v=O.4(11/6) to about
v=4.6(n/6) in tha lower center portion of Fig. 6. The superfine structure of
the upper one is visible withou~ magnification. Twelve etates in five
levelm are crowded together in theme clusters.

-FOLD
LUSTERS

Flfi. H. hm-rl:y Iewls fmr MIMFII tmrsor #16-cus VTh+oln vTb ● s ● functlom
of mlmlnl: •m~:lc v fur J-30. (Alter R-f. [27].) Th@ V=(I or v-m
laVei- ara ●lmllar to thmmr in Fig, 3. Tfra ● rrous lrrdlc~tr tha
lavrls currespnndlrrr, to Rh nurfaccn In FIRn, 7 (II, (c), (d), hnd

(a), reapectlwly,

The surfaces at the values V=0.414(fi/b) and vm4.6411(11/6) where tho
tw- fold cluatara begin and ml are shown in Fig. 7 (b) or (e). Thcso are
valu& for which the two-fold enatgy ●quale tha ●ner~y ●t the threa or
fol&folrl axec, respectively. From Fig. B ona can sea that the C4fIaL’gy

spectrum is dominatod at these points by four or three-fold cluatera~
respectively. Finally, one should note that the v-n surface in Fig 7(f) 1s

just an upsida-down version of the v-U surface in Fin. 7(a).

The pattern of chang’.n~ &eogrnphy and al~anvnluem Been in FIRtI. 7 and H
will bo aimilnr to that which occurs in ● mIIch more complicated Coriolia
couplinl: problcm discussed in Lhe foLlowing ~ectlon.
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B. Scalar and Tensor Coriolis Combinations

The fundamental v3 and Vq vibrational states a e~ fac~ spanned by a
dipole active triplet of vector-iike base states {$1,$ ,~1} of vibrational

angular momentum 2=1 and cubic symmetry species T1 . T~e coupling of the
vibrational angular momentum 1 with the roc~tional momentum R yields atotal
angular moment~m J=ll+-g which is conserved. In SF6 and other similar
molecules most oi the angular momentum counling or Coriolis effeccs are well
described by the following t{amiltonian [281

Hv = v+UJ2+2D&~+t *24[v2(rotation) xv2(vibration)]~l , (505)

where tb first two terms determine the vibrational and rota~ional energy,
and the ~ond two terms determine the vibration-rotation or Coriolis
interactions.

We shall compare the spectra and RE surface dyntimice of the interactions
by varying the coefficient BC (B-zeta) of the scalar Coriolis operator for a
fixed value of the tensor coefficient t22k. We shall once again treat tile
angular momentum as a semi-classical quantity which precesses around
topgraphy lines on an RE surface. The problem is: What RE surface?

This is a new approach to Coriolis effects, but a useful analogy can be
made ~ith older problems. Jahn, Tellar, and Renner studied
electron-vil ration vibronic interactions .,nvolvtng two, three, or more
electronic base functions {’$1 P$z P$3....} with the siameor nearly ths same
energy. As is well known this degeneracy signals a possible “breakdown” of
the Born Oppenheimer approximation and the whole system electrons and
vibrating nucl.e! can become “floppy”. TO study the dynamics of Such a systel,i

one constructs n multiple interpenetrating potential encr,.;y(Pli)surfaces by
diagonalizinc an effective Ilamiltonian in tilC eleCtrOIIiC basis

%,02, ,..fn} os LIfunction of vibrational co-ordlnatcs.

To study the Coriolis dynamics we shall similarly diaAonalize an
effective Hamiltonian in the body defined haais

{ml> ● ’$1’
lx> -$0 , In-l> - $-1}

of vibrational functions and plot the thraa reeulting functions of the

an[;ularmomuntum direction angles {f3ty] or the projectad Ix,y] co-odinates

given by (5.4). This will yeld three sometimes interpenetrating RE surfaces
which will provide information about Coriolls dynamics and ~pectra.

The detaila of the derivation of the ●ffective Hamlltonian is mostly
described in Ref. 28 and cannot be repented here due to lack of apace. The
raault In the {llZ~body basia la the following. (Ilerewe ignore v and 13J2.)

In-l.,

[

2 3cos20-1 -2+7ain6cos (cosy-iainy) aln2B(6cos2y+i 4sln2y)
‘d;body = 2t224°

!
cc. -2(lcoa B-1)

1

2~~~in~~os6(~q~y. ~~~ny)

cc. cc, 3COS 0-1

[

COSP ainfl(cofly= ielny)//~ o
+2UCJ cc. () sinll(cosY-lslnY)/~7

cc. cc. -Cosfl I
(5.6)
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For many purposes it 1s mere convenient to have this matrix in the
laboratory defined basis. tieshall designaze the lab basis by

{1P> = [R=J+l> , IO> - IR=J> , IR. = IR=J-1>}

in correspondence with the P,Q, and R branches of a V- spectrum (See Fig. la)
wh!.ch result from transitions to these states when Bq la much larger than

t224“ In this representation the scslar Coriolis operator J*E is diagonal

1P> IQ> IR>

o

0

0

and the tensor Coriolis components are giver.as follows.

H
Pp = ‘RR = (35cos46-30cos26+5sin4~cos4y+3) /4 - -

llQQ’2

HPR

‘QR
H
RR )

o

0 )-2DqJ

(5.6)

“PQ-
5sinB[7cos30- 3cos6-sin2f3 !cos13co:4y+isiniy )]/2fi =

- llQR
(5.9)

A
PR -

5[-7cos46+9cos26+(L-cos4B)cos47+ ?lcos6sin2Elsin4y-1] /4 (5.10)

One should note that the diagon?l components (5.8) have precisely tile
form of Lhe (L-O) ground level RE surface defined by (2.5). ‘The excited

(1=1) level 17E surfaces consist of three copies of ground level 17E surface
with the middle (Q) one+upside down and twice as deep for~arga UC. Then the
rotor angular momentum R is mostly conserved and provides a gocd quantum
number R = J+l, J, or J-1 for well scpatatal P? Q, and R branches. The
vibrational momentum L is defined by !ts component on the lab fixed J vector.

It is lnterestinL to sea what happh?nswhen U is <mall or zero. A plot
of the resulting spectrum f~r JmbO 1s shown in Fig. ~a .nd b. Fig. 912
present”; a magnified view of the neighborhood of Bc=O.

one ehould note that the upper branch of l“vel trajectories in Fig. 9b
has a pair of triangular ro~ions which cortaln tw~ fold clusters forlBg>O and

IDCI<l .2. Each triangular reg.on 1s surrounded on lts upper sida by reglous
containing mostly three-fold ~!uste:a on one sida and mostly four-fold
clusters on the other side anti separntrix :egions in betw?cn. In other words,
each trifIngulnr region in Fig. 9b resembles the tL”i~ngul~~re~!ion tha middle
of Fig. 13 which is (I!Ic to 5th i-ank tensur~ halving producod stable twefolcl
clusters. ‘lYliswas qutt~ b~rprlsin~ to FiIId in the spectrn of n %th r,~llk
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tensor which generaly has only unstable saddle points on two-fold axes. How
then can stable classical rotation be established on a twrrfold axis for
small ~?

The 3D plots of RE surfacea in Fig. 10 show clearly that stable valleys
or pea!csexist on twe fold axes for low values of BG. The Coriolis
interaction can stabilize an otherwise unstable mot!.on just as a magnetic
field can stabilize orbits in a quadruple ion trap. Comparison of the
top-surface in the first two plots in Fig. 10 (for BqI=O.Oand Bc=O.5) reveals
that the latter has developed valleys on the twe fold axis. Tile top surface
for Bri=O.Oresembles the v=4.6(T/6) surface in Fig. ~~and s~pports three-fold
clusters Gnly. The middle surface for bL=O.5 (Fig. 10(b))has the same
shape only upside down, and it corresponds to the lower limit for stable
tw- fold precession on this surface. The top surface tiithBc=l.O (Fig. 1O(C))
has a shape similar to the vI=O.41(T/6) surface in Fig. 7(b). It supports
only four= fold precession and corresponds to the upper limit for two-fold
precession on tiletop surface. Howevert at K=l.O the two-fold clusters are

still very strong in the middle region asseen in Figs. 9Nor 10fc).

By comparing Figs. 9 and 10 for vari~us valuee of BC it is seen that
very complicated spectral patterns are described quite simply and accurately
by the RE surface pictures even in the presence of ~esonant Coriolis mixing
at gmall M. Furthermorep each point on the surface corresponds to a

t’

articular eigenstate combination of vibrational states {l~ll~>lfl-~>~ or else
tp>lQ>lR>]o The former are body-defined angular momentum states which will
be mere convenient bases to use in the limit nf Bc=O, i.e., when the Born-
Oppenheimer approximation for vibrational wavefunctions 1s valid.

Clt.herinteresting points of comparison between spectra in Fig.9 and RE
surfaces in Fig. 10 include BGS1.3 when the lower surface is almost flat, and
crossover points or conical intersections at Rc=2.CIand 3.0. The physical
interpretation of these patterns and dynamics must await future uork.

c. TWO fold Clusters in Asymmetric Tops

As a final example we ahow the J-lo energy levels and RE surface
trajectories for an asymmetric rigid top in Fig. 11. This example shows that

absence of high symmetry does not necessarily prevent the existence of
cluster patterns and semiclassical analysis. The details of t,leasymmetric

top analysis are discussed in [131 and are based upon earlier work by

King[291 and Colwell, Handy, and lliller1301. The two-fold or C2(X) and
C2(y) clueters in Fig. 11 are analngous to the C3 ane ~ clusters for the
octahedral symmetry in Fig. 3. The C2(y) clusters are impossible when the

y-axis sits on saddle points. SF6 (or CgHa) and asymmetric tops repre ent twb
extreme9 in molocular symmetry. Between these extremes there should be a
broad range of molec~les with fascinating examples of spectral patterns and
rovibronlc dynamics. A clear picture of this dynamics can be obtained from
analysis of rotational energy surface.
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